Expression of transmembrane protein 26 (TMEM26) in breast cancer and its association with drug response
نویسندگان
چکیده
We have previously shown that stromal cells desensitize breast cancer cells to the anti-estrogen fulvestrant and, along with it, downregulate the expression of TMEM26 (transmembrane protein 26). In an effort to study the function and regulation of TMEM26 in breast cancer cells, we found that breast cancer cells express non-glycosylated and N-glycosylated isoforms of the TMEM26 protein and demonstrate that N-glycosylation is important for its retention at the plasma membrane. Fulvestrant induced significant changes in expression and in the N-glycosylation status of TMEM26. In primary breast cancer, TMEM26 protein expression was higher in ERα (estrogen receptor α)/PR (progesterone receptor)-positive cancers. These data suggest that ERα is a major regulator of TMEM26. Significant changes in TMEM26 expression and N-glycosylation were also found, when MCF-7 and T47D cells acquired fulvestrant resistance. Furthermore, patients who received aromatase inhibitor treatment tend to have a higher risk of recurrence when tumoral TMEM26 protein expression is low. In addition, TMEM26 negatively regulates the expression of integrin β1, an important factor involved in endocrine resistance. Data obtained by spheroid formation assays confirmed that TMEM26 and integrin β1 can have opposite effects in breast cancer cells. These data are consistent with the hypothesis that, in ERα-positive breast cancer, TMEM26 may function as a tumor suppressor by impeding the acquisition of endocrine resistance. In contrast, in ERα-negative breast cancer, particularly triple-negative cancer, high TMEM26 expression was found to be associated with a higher risk of recurrence. This implies that TMEM26 has different functions in ERα-positive and -negative breast cancer.
منابع مشابه
The cytotoxic effect of memantine and its effect on cytoskeletal proteins expression in metastatic breast cancer cell line
Objective(s):Breast cancer is an important leading cause of death from cancer. Stathmin and tau proteins are regulators of cell motility, and their overexpression is associated with the progression and bad prognosis of breast cancer. Memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is the potential inhibitor of tau protein in neurons. This study determines the effect of memantine ...
متن کاملPTEN Gene Expression and Its Association with rs10490920 SNP in Breast Cancer
Introduction: The PTEN gene, also known as MMAC1 or TEP1, is a tumor suppressor gene. One of the important polymorphisms of this gene is the rs10490920 SNP. The purpose of this study was to determine the PTEN gene expression and its relation to changes in rs10490920 polymorphism in breast cancer. Methods: In this study, 40 breast cancer patients and 10 healthy controls were considered. The expr...
متن کاملEvaluating the clinical importance of long-non coding RNA MALAT1 expression in breast cancer
Background: Breast cancer is one of the major causes of illness and mortality among women. Long non-coding RNAs (LncRNAs) have important role in tumor development and progression. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a lncRNA that deregulates in several cancers, however, its value in the diagnosis of breast cancer is unclear. This study was conducted to investigate...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کامل